geonext_toolbar_standard=Bara de instrumente standard
geonext_toolbar_standard_text=Bara de instrumente cu toate pictogramele disponibile
geonext_toolbar_basic=Bara de instrumente elementare
geonext_toolbar_basic_text=Bar\u00e3 de instrumente cu mai pu\u0163ine intr\u00e3ri
geonext_toolbar_user=Bara de instrumente definit\u00e3 de utilizator
geonext_toolbar_user_text=Bara de instrumente predefinit\u00e3 a utilizatorului actual
geonext_load_title=Deschidere
geonext_save_title=Salvare
geonext_export_title=Export
geonext_import_title=Import
geonext_unknown=Necunoscut
element_description=Obiect <b>{THIS}</b>
element_element_name=Obiect
element_short=Informa\u0163ii despte obiect
angle_auto_name=un
angle_description=Desenarea unghiului <b>{A}{S}{B}</b>(Nume intern:<b>{THIS}</b>). Numit <b>{textvalue}</b>
angle_element_name=Unghi
angle_short=Definit de {A}, {S} (varf) si {B}
arc_auto_name=Arc
arc_description=Desearea arcului <b>{THIS}</b> \u00een jurul punctului <b>{M}</b> av\u00e2nd punctul de pornire <b>{P}</b>. <b>{A}</b> define\u015fte unghiul central <b>{P}{M}{A}</b>
composition_midpoint_description_b=Desenarea punctului mijlociu <b>{OutputElement#0}</b> \u00eentre punctele care definesc pe <b>{InputElement#0.numeleelementului}</b> <b>{InputElement#1}</b>.
composition_perpendicular_point_description=Desenarea piciorului <b>{OutputElement#0}</b> unei drepte verticale pornind de la <b>{InputElement#0}</b> \u00eenspre <b>{InputElement#1}</b>.
composition_mirror_line_description=Simetrizarea punctului <b>{InputElement#0}</b> fa\u0163\u00e3 de <b>{InputElement#1}</b>. Punctul simetric se va numi <b>{OutputElement#0}</b>.
composition_mirror_point_description=Simetrizarea punctului <b>{InputElement#1}</b> fa\u0163\u00e3 de <b>{InputElement#0}</b>. Punctul simetric se va numi <b>{OutputElement#0}</b>.
composition_parallelogram_point_description=Desenarea punctului <b>{OutputElement#0}</b> astfel \u00eenc\u00e2t punctele <b>{InputElement#0}{InputElement#1}{OutputElement#0}{InputElement#2}</b> s\u00e3 defineasc\u00e3 un paralelogram. <b>{InputElement#0}{InputElement#2}</b> este paralel\u00e3 cu <b>{InputElement#1}{OutputElement#0}</b>.
composition_perpendicular_description=Desenarea dreptei verticale <b>{OutputElement#1}</b> definit\u00e3 pornind de la punctul <b>{InputElement#0}</b> la <b>{InputElement#1}</b>. Punctul ei ini\u0163ial se nume\u015fte <b>{OutputElement#0}</b>.
composition_normal_description=Desenarea dreptei <b>{OutputElement#0}</b> prin <b>{InputElement#0}</b> normal\u00e3 la <b>{InputElement#1}</b>.
composition_parallel_description=Desenarea dreptei <b>{OutputElement#0}</b> paralel\u00e3 cu <b>{InputElement#1}</b> trec\u00e2nd prin punctul <b>{InputElement#0}</b>.
composition_circumcircle_description=Desenarea cercului <b>{OutputElement#1}</b> prin punctele <b>{InputElement#0}</b>, <b>{InputElement#1}</b> \u015fi <b>{InputElement#2}</b>. Centrul lui se va numi <b>{OutputElement#0}</b>.
composition_arrow_parallel_description=Desenarea s\u00e3ge\u0163ii <b>{OutputElement#0}</b> paralele cu s\u00e3geata <b>{InputElement#1}</b>. Piciorul este dat de <b>{InputElement#0}</b> iar v\u00e2rful ob\u0163inut se va numi <b>{OutputElement#1}</b>
composition_sector_description=Desenarea sectorului unui cerc avand arcul <b>{OutputElement#0}</b> \u00een jurul centrului <b>{InputElement#0}</b> \u015fi av\u00e2nd unghiul la centru <b>{InputElement#1}{InputElement#0}{InputElement#2}</b>. Arcul se termin\u00e3 \u00een punctul <b>{OutputElement#1}</b>, iar punctele de pornire \u015fi oprire ale arcului se vor numi <b>{OutputElement#2}</b> \u015fi <b>{OutputElement#3}</b>.
composition_description=Obiect compus
composition_element_name=Obiect compus
composition_midpoint_short_a=Punct mijlociu definit de {InputElement#0} \u015fi {InputElement#1}
composition_midpoint_short_b=Punct mijlociu definit de {InputElement#0}
composition_perpendicular_point_short=Piciorul unei drepte verticale definite de {InputElement#0} \u015fi {InputElement#1}
composition_circumcircle_center_short=Centrul cercului circumscris definit de {InputElement#0}, {InputElement#1} \u015fi {InputElement#2}.
composition_mirror_line_short=Punct simetric definit de {InputElement#1} (axa) \u015fi {InputElement#0}
composition_parallelogram_point_short=Punct de paralelogram definit de {InputElement#0}, {InputElement#1}\u015fi {InputElement#2}
composition_bisector_short=Bisectoare definit\u00e3 de {InputElement#0}, {InputElement#1} \u015fi {InputElement#2}
composition_perpendicular_short=Dreapt\u00e3 vertical\u00e3 definit\u00e3 de {InputElement#0} \u015fi {InputElement#1}
composition_normal_short=Dreapt\u00e3 perpendiculara definit\u00e3 de {InputElement#0} \u015fi {InputElement#1}
composition_parallel_short=Dreapt\u00e3 pralel\u00e3 definit\u00e3 de {InputElement#0} \u015fi {InputElement#1}
composition_circumcircle_short=Cercul circuscris definit de {InputElement#0}, {InputElement#1} \u015fi {InputElement#2}
composition_arrow_parallel_short=S\u00e3geat\u00e3 paralel\u00e3 definit\u00e3 de {InputElement#0} (picior) \u015fi s\u00e3geata {InputElement#1}
composition_sector_short=Sector de cerc definit de {InputElement#0} (punct mijlociu), {InputElement#1} \u015fi {InputElement#2}
composition_short=Obiect compus
graph_auto_name=G
graph_description=Desenarea graficului <b>{THIS}</b> func\u0163iei y = <b>{sy}</b>.
graph_element_name=Graficul unei func\u0163ii
graph_short=y={sy}
graphslider_description=Punctul <b>{THIS}</b> este mobil pe graficul <b>{E}</b>.
graphslider_element_name=Punct mobil
graphslider_short=Drepte pe un grafic {E}
group_description=Combinarea acestor puncte \u00eentr-un grup <b>{THIS}</b>:
group_description_and=\u015fi
group_element_set_name=Grup
group_element_name=Grup
group_short=Combinat
intersection_description_a=Intersec\u0163ia dintre <b>{E}</b> \u015fi <b>{F}</b>. Punctul de intersec\u0163ie se va numi <b>{A}</b>.
intersection_description_b=Intersec\u0163ia dintre <b>{E}</b> \u015fi <b>{F}</b>. Punctele de intersec\u0163ie se vor numi <b>{A}</b> \u015fi <b>{B}</b>.
intersection_description_c=Intersec\u0163ia dintre <b>{E}</b> \u015fi <b>{F}</b>. Punctele de intersec\u0163ie se vor numi <b>{A}</b> \u015fi <b>{B}</b>.
intersection_description_d=Intersec\u0163ie
intersection_element_name=Intersec\u0163ie
intersection_short=Intersec\u0163ia dintre {E} \u015fi {F}
line_description_a=Desenarea dreptei <b>{THIS}</b> prin puctele <b>{A}</b> \u015fi <b>{B}</b>.
line_description_b=Desenarea semidreptei <b>{THIS}</b> av\u00e2nd punctul de pornire <b>{B}</b> \u015fi trec\u00e2nd prin <b>{A}</b>.
line_description_c=Desenarea semidreptei <b>{THIS}</b> av\u00e2nd punctul de pornire <b>{A}</b> \u015fi trec\u00e2nd prin <b>{B}</b>.
line_description_d=Desenarea segmentului de drepata <b>{THIS}</b> pornind de la <b>{A}</b> p\u00e2n\u00e3 la <b>{B}</b>.
line_element_name_line=Drept\u00e3
line_element_name_segment=Segment de dreapt\u00e3
line_element_name_ray=Semidreapt\u00e3
line_element_name=Dreapt\u00e3
line_short_a=Definit\u00e3 de {A} \u015fi {B}
line_short_b=Definit\u00e3 de {B} (punct ini\u0163ial) \u015fi {A}
line_short_c=Definit\u00e3 de {A} (punct ini\u0163ial) \u015fi {B}
line_short_d=Legarea lui {A} cu {B}
parametercurve_auto_name=P
parametercurve_description=Desenerea curbei <b>{THIS}</b> cu x = <b>{sx}</b> \u015fi y = <b>{sy}</b>. Parametrul <b>t</b> vari\u00e2nd \u00eentre <b>{min}</b> \u015fi <b>{max}</b>.
parametercurve_short=x = {sx} \u015fi y = {sy} cu t de la {min} la {max}
point_description=Desenarea punctului <b>{THIS}</b> cu valorea-x <b>{x}</b> \u015fi valoarea-y <b>{y}</b>.
point_element_name=Punct
point_short=Punct liber
polygon_auto_name=P
polygon_description=Desenare {poligon} <b>{pointelements}</b>. Se va numi <b>{THIS}</b> \u015fi va fi m\u00e3rginit de urm\u00e3toarele segmente de dreapt\u00e3:
polygon_element_name_0=---
polygon_element_name_1=---
polygon_element_name_2=---
polygon_element_name_3=Triunghi
polygon_element_name_4=Patrulater
polygon_element_name_5=Pentagon
polygon_element_name_6=Hexagon
polygon_element_name_7=Heptagon
polygon_element_name_8=Octogon
polygon_element_name_9=Nonagon
polygon_element_name_10=Decagon
polygon_element_name_11=11-gon
polygon_element_name_12=12-gon
polygon_element_name=Poligon
polygon_short={poligon} definit de:
slider_description=Punctul modil <b>{THIS}</b> este legat de <b>{E}</b>.
slider_element_name=Punct mobil
slider_short=Se afl\u00e3 pe {E}
text_error=Eroare
text_description=Textul <b>{THIS}</b> este <b>{text}</b>.
text_element_name=Text
tracecurve_auto_name=L
tracecurve_description=Desenarea locului geometric al punctului <b>{TracePoint}</b>, ob\u0163inut prin mi\u015fcarea punctului mobil <b>{Slider}</b>.
tracecurve_element_name=Loc geometric
tracecurve_short=Definit de {Slider} (punct mobil) \u015fi {TracePoint} (punctul dependent)
jboard_close=\u00cenchidere
jboard_close_message=Plan\u015feta nu a fost \u00eenc\u00e3 salvat\u00e3.\nChiar dori\u0163i s\u00e3 o \u00eenchide\u0163i?
jboard_close_header=S\u00e3 se \u00eenchid\u00e3 plan\u015feta?
jframedialog_config_toolbar=Configurarea barei de instrumente
jframedialog_text=Text \u015fi calcule
jframedialog_input=Date ini\u0163iale
jframedialog_caspoint=Punct-(x;y)
jframedialog_print_title=Tip\u00e3rire
jframedialog_print_button=Tip\u00e3rire
jconfigtoolbar_act=Bara de instrumente active
jconfigtoolbar_insert=Inserare
jconfigtoolbar_up=Sus
jconfigtoolbar_down=Jos
jconfigtoolbar_delete=\u015etergere
jconfigtoolbar_item=Pictograme
jconfigtoolbar_select=Pictogramele selectate
jconfigtoolbar_separator=Separator
jconfigtoolbar_choosen=Bara de instrumente selectat\u00e3
jconfigtoolbar_toolbars=Bare de instrumente
jcontentgeneral_fontsize=Dimensiunea caracterelor
batik_message=Aceasta versiune folo\u015fte pachetul Batik. Informa\u0163ii suplimentare despre Batik sunt disponibile la adresa http://xml.apache.org/batik